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We study the growth of a directed network, in which the growth is constrained by the cost of adding links
to the existing nodes. We propose a preferential-attachment scheme, in which a new node attaches to an
existing node i with probability ��ki��ki

−1, where ki is the number of outgoing links at i. We calculate the
degree distribution for the outgoing links in the asymptotic regime �t→��, nk

*, both analytically and by Monte
Carlo simulations. The distribution decays like k�k /��k� for large k, where � is a constant. We investigate the
effect of this preferential-attachment scheme, by comparing the results to an equivalent growth model with a
degree-independent probability of attachment, which gives an exponential outdegree distribution. Also, we
relate this mechanism to simple food-web models by implementing it in the cascade model. We show that the
low-degree preferential-attachment mechanism breaks the symmetry between in- and outdegree distributions in
the cascade model. It also causes a faster decay in the tails of the outdegree distributions for both our network
growth model and the cascade model.
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I. INTRODUCTION

Many real-world networks that have been studied re-
cently, such as the internet, the World Wide Web, and social
relations have a scale-free structure, whose degree distribu-
tion, P�l�, follows a power law for large l, the number of
links connecting to a single node. A scale-free network can
be constructed using a preferential-attachment mechanism in
which a new node attaches to an existing node, i, which has
li links with a probability ��li�= li /� jlj �1�. This form of
preferential attachment means that the highly connected
nodes attract more new nodes than the others, and it explains
the structure of networks such as the internet, in which a
connection is favorable for both connected nodes, and where
links are undirected. Growth according to this mechanism
leads to self-organization into a scale-free structure �1–5�.

In this paper, we propose a preferential-attachment
scheme for growing directed networks �6,7�, in which new
nodes prefer to attach to existing nodes with lower degree.
Such a mechanism could play a role in some transportation
networks �8,9� such as food webs �10–13� or power grids
�14,15�, which can be considered directed. The links in such
networks transport some sort of resource to “feed” the nodes.
Each node gets resources only by feeding on another one.
�The initial nodes can be considered as sources.� We take the
direction of the resource flow as the direction of the link.
Therefore, an outgoing link transports resources from a
“prey” node to a “predator” node. If there is more than one
predator that feeds on a prey node, then the resources sup-
plied by the prey have to be shared by the predators. This
implies that for a conventional growth model, the attractive-

ness of a node in such a network should increase with the
number of its incoming links �indegree�, and decrease with
the number of its outgoing links �outdegree�. In other words,
the cost of adding links to an existing node should increase
due to limited capacity, as the number of nodes that feed on
it increases. This cost puts a constraint on the growth of the
network �14�. A good example of such a system, the world-
wide airport network, is studied in Ref. �16�.

Therefore, we propose a growth scheme, in which a new
node attaches to an existing node, i, with probability
��ki� ,ki�� �ki� /ki��, where ki and ki� are the number of outgo-
ing and incoming links at node i, respectively. This means
that new nodes prefer connecting to existing nodes with
more incoming and fewer outgoing links because they pro-
vide more resources per outgoing link. Here we study a spe-
cial case in which ki�=m for all nodes.

As mentioned above, we believe that such a mechanism
could play a role in real systems such as food webs, which
provide a good basis for testing our predictions. There has
been significant progress in this field in the last decade, es-
pecially in development and understanding of static models,
which have been quite successful at reproducing webs with
structural properties in agreement with the empirical data
�10–13,17–20�. Despite their success, most, if not all, pro-
posed static food-web models in the literature such as the
cascade model �21� and the niche model �17� are phenom-
enological models. They do not employ physical principles
in the assembly process, or at least, the rules they employ do
not yet have any physical interpretations. Although the
mechanism we propose in this paper is quite naíve, we be-
lieve that a static food-web model should employ such rules,
which can be related to physical principles.

The structure of the paper is as follows. We describe the
model, derive the outdegree distribution, and compare the
results with Monte Carlo simulations in Sec. II. Some details
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of the calculations are given in Appendix A. In Sec. III, we
compare the proposed model to an equivalent model with a
degree-independent probability of attachment. The derivation
of the outdegree distribution for this model is provided in
Appendix C. In Appendices B and C, we show that the out-
degree distributions for these growth models can be scaled
onto a single scaling function for large m. In Sec. II, we also
relate our results to some food-web models. We summarize
our results in Sec. IV.

II. MODEL AND RESULTS

The growth begins with N0�m nodes with m incoming
links, each connected to unspecified nodes outside the net-
work. These initial nodes can be considered as sources, and
the only purpose of their links is to make sure that each node
has the same number of incoming links. We add one node
with m incoming links at each time step, which connects to
m different nodes. The direction of the new links are the
same as the direction of the resource flow: from the existing
node to the new one. An example of such a network after the
first few time steps is shown in Fig. 1.

As we stated above, an existing node acquires a new link
with probability ��ki� ,ki�� �ki� /ki��. However, for the case in
which all nodes have m incoming links, ki�=m is just a scale
factor. Without changing the proportionality for ki�1, we
replace ki by ki+1 in order to keep ��ki� finite for ki=0.

Here, we study a special case of this attachment probability,
��ki��ki

−�, in which �=1. Therefore, the probability of at-
tachment is given by

��ki� =
1

�ki + 1�Zm
, �1�

where

Zm = �
i=0

NT 1

ki + 1
= �

k=0

�
Nk

k + 1
. �2�

Here, Nk is the number of nodes with outdegree k, and NT is
the total number of nodes. We note that Nk, and therefore,
Zm, depends on time.

We use the rate–equation approximation of Refs. �4,5�. In
the limit of NT�1, the rate equations for the outgoing links
are

dN0

dt
= 1 − m��0�N0, �3�

dNk

dt
= m��k − 1�Nk−1 − m��k�Nk for k 	 0. �4�

Substituting nkNT for Nk, and using dNT/dt=1, yields corre-
sponding equations for the density of nodes

dn0

dt
=

1 − n0

NT
− m��0�n0, �5�

dnk

dt
= m��k − 1�nk−1 − nk�NT

−1 + m��k�� for k 	 0.

�6�

We are interested only in the asymptotic regime �t→��, in
which dnk /dt=0, and the distribution reaches a steady state.
The steady-state solutions of Eqs. �5� and �6� are

n0
* =

1

1 + m/zm
* , �7�

nk
* =

nk−1
*

k��k + 1�−1 + zm
* /m�

for k 	 0, �8�

where

zm
* = lim

t→�
Zm/NT = �

i=0

�
ni

*

i + 1
. �9�

The solution of the recursion relation Eq. �8� can be obtained
by a few straightforward algebraic manipulations. First, we
convert the right-hand side of Eq. �8� into a product, using
Eq. �7�

nk
* =

�m/zm
* �k�k + 1�

1 + m/zm
* �

j=1

k
1

j + 1 + m/zm
* for k 	 0. �10�

Then, using the identity ��x+1�=x��x�, we write the prod-
uct in terms of a ratio of Gamma functions to obtain the final
form of the outdegree distribution

FIG. 1. Illustration of the growth with N0=4 and m=3. Nodes 1,
2, 3, and 4 are the initial �source� nodes connected to unspecified
nodes outside the network. Nodes 5, 6, and 7 are the nodes added at
time steps 1, 2, and 3, respectively. See text for details.
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nk
* = �k + 1��m/zm

* �k ��1 + m/zm
* �

��k + 2 + m/zm
* �

for k � 0. �11�

We note that Eq. �11� holds for k=0 as well. �The outdegree
distribution, Eq. �11�, is analogous to the predator distribu-
tion in a food web. We use the terms in- and outdegree dis-
tribution interchangeably with prey and predator distribution,
respectively.� The outdegree distribution, nk

*, is shown in Fig.
2 for m=1, 3, and 5. The method we use to obtain zm

* is
explained in Appendix A. Also, in Appendix B, we prove
that the scaled distributions mnk

* vs u=k /m collapse onto a
single scaling function,

p�u� =

u

2
exp�− 
u2/4� , �12�

for large values of m.
We also check our theoretical results by comparing them

to results of Monte Carlo simulations. The growth scheme in
the simulations is implemented as follows. We begin the
simulation with N0�m nodes with m incoming links each.
At each time step, we add one new node. We pick a random
existing node from the network, calculate the probability of
attachment to that node, and generate a random number. If
the random number is smaller than the attachment probabil-
ity, we create a link between the new node and the randomly
picked node. If not, we randomly pick another node from the
network and repeat the process until the new node has m
links. �We do not pick the same node twice.� The direction of
a new link is from the existing node to the new one. The

simulation stops when the system size reaches Nmax+N0
nodes. We take Nmax=106 and average the results over eight
independent runs.

The results of the Monte Carlo simulations are also shown
in Fig. 2. They are in excellent agreement with the theory.
The deviations in the last three nonzero data points are con-
sistent with the number of runs used for averaging.

In order to clarify the role of the low-degree preferential
attachment, we provide some comparisons with similar mod-
els in the next section.

III. THE ROLE OF THE LOW-DEGREE PREFERENTIAL
ATTACHMENT AND RELEVANCE TO SIMPLE

FOOD-WEB MODELS

A. A growing network with degree-independent probability of
attachment

We first compare our model to an equivalent model with a
degree-independent probability of attachment, �=1/NT. In
this case, � is the same for all nodes, however, it is time
dependent. As we prove in Appendix C, a degree-
independent � yields a network with an exponential outde-
gree distribution as seen in Fig. 3. This shows that the low-
degree preferential attachment is responsible for the peaked
form of nk

*, and also for the faster decay in the tail.

B. The cascade model

Second, we test the effect of the low-degree preferential
attachment in the cascade model �20,21�, which is a simple
wiring-based food-web model. Although the cascade model

FIG. 2. �Color online� Outdegree �predator� distributions, nk
*, for

the growth model with low-degree preferential attachment, for m
=1, 3, and 5 with N0=10. The results of the Monte Carlo simula-
tions �the symbols �, �, and �� are in excellent agreement with the
theory �the symbols �, �, and ��. As k is a discrete variable, the
lines connecting the symbols are merely guides to the eye. The
simulations were performed up to a system size of NT=N0+106

nodes, and averaged over eight independent runs. Inset: The same
distributions shown on a log-linear scale. The tails decay faster than
an exponential, indicating that the topology of the network is rela-
tively homogeneous.

FIG. 3. �Color online� Outdegree �predator� distributions, nk
*, for

the equivalent growth model with degree-independent probability
of attachment, for m=1, 3, and 5 with N0=10. The results of the
Monte Carlo simulations �the symbols �, �, and �� are in excellent
agreement with the theory, which predicts exponential decay �the
symbols �, �, and ��. Compare to the degree-dependent case in
Fig. 2. The simulations were performed up to a system size of NT

=N0+106 nodes, and averaged over eight independent runs. Inset:
The same distributions shown on a log-linear scale along with the
theoretical results for the degree-dependent case �gray curves, tur-
quoise online� in Fig. 2 for comparison.
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has now mostly been replaced by improved variants like the
niche model �17�, it serves our purpose better, because it is
quite simple and transparent. The cascade model builds a
web using a few simple rules as follows. The species are
numbered from 1 to S, where S is the total number of spe-
cies. Each species, i, is allowed to prey on a species j, where
i	 j, with a constant probability x=d /S, where dS is a
constant. The species with no predators constitute the top
species, and the species with no prey constitute the basal
species �23�. The average number of prey �or predator� per
species is equal to �d /2��1−1/S��d /2 for large S. There-
fore, d /2 is analogous to m in our growth model.

The calculation of the outdegree �predator� distribution of
the webs produced by the cascade model is quite straightfor-
ward. First, we find the probability of finding a node, i, with
k outgoing links

Pi
�out��k� = �S − i

k
	�1 − x�S−i−kxk with k  S − i . �13�

Then we obtain the outdegree distribution by summing
Pi

�out��k� over i, and normalizing by S �24�

p�out��k� =
1

S
�
i=1

S−k

Pi
�out��k� with k � S . �14�

The cascade model produces webs with identical in- and out-
degree distributions. One can prove this by substituting
PS−i+1

�out� �k� for Pi
�in��k� in p�in��k�=�i=k+1

S Pi
�in��k� /S.

In order to see the effect of the low-degree preferential
attachment, we modify the cascade model by changing the
probability of attachment from a constant, x=d /S, to a de-
creasing function of the outdegree of the prey node, x�ki�
=d / �S�ki+1��. �We note that for both original and modified
cascade models, the probability of attachment does not de-
pend on time, unlike in our proposed growth model.� Obvi-
ously, this modification does not conserve the expected total
number of links. Nevertheless, it still demonstrates the effect
of the low-degree preferential attachment in the cascade
model. We also point out that the degree-dependent nature of
this mechanism could cause different degree distributions in
the cascade model, depending on the order in the wiring
procedure. �See �25�.� We leave extensive analysis to a fur-
ther publication and give only these preliminary results here.

Figure 4 shows the in- and outdegree distributions of the
original and modified cascade models for d=10 and S=104.
One can clearly discern two changes: the new in- and outde-
gree distributions are not identical, and they are also quite
different than those of the original cascade model. The new
outdegree distribution takes a similar form to the outdegree
distribution in our model, nk

*, in Eq. �11�, and the new inde-
gree distribution decays monotonically. For a better compari-
son, we also provide the scaled forms of these distributions
in Fig. 5. The figure shows that the tail of the outdegree
distribution is depressed, while the indegree distribution de-
cays much more slowly than in the original cascade model.
All the distributions decay faster than an exponential. The
analytical forms of the distributions are left for further inves-
tigation.

One could also compare our results with the latest find-
ings in food-web theory. According to Camacho et al.
�18–20�, the predator and prey distributions for most empiri-
cal food webs obey universal functional forms. The universal
form of the predator �outdegree� distribution is given by
ppred�k�=��k+1,z� /z, where ��k ,z� is the incomplete
Gamma function and z is the average connectivity, 2L /S,
with L the total number of links in the web. This is a con-
tinuum approximation to Eq. �14� for S�1 and x�1. This
form of the predator distribution suggested by Camacho et
al. and the outdegree distribution of our model with low-
degree preferential attachment, nk

*, have some similarities,
like the cut-off values and Gaussian-like, fast-decaying tails.

FIG. 4. �Color online� Degree distributions for the cascade
model with and without low-degree preferential attachment with d
=10 and S=104. The error bars for the Monte Carlo data �averaged
over eight runs� are smaller than the symbols. “Total” represents the
distribution for the total number of links, k+k�. �a� The distributions
for the original cascade model, in which the probability of attach-
ment is x=d /S �the symbols, �, �, and ��. The in- and outdegree
distributions obtained from the Monte Carlo simulations practically
overlap in agreement with the theory, Eq. �14� �black line�. �b� The
distributions for the cascade model with low-degree preferential
attachment with x�ki�=d / �S�ki+1��. The in-outdegree symmetry of
the original cascade model is broken in the new distributions. See
text for details.
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A detailed assessment, however, requires further analysis,
which we plan to publish elsewhere.

IV. SUMMARY

We have studied an attachment scheme for growing di-
rected networks, in which a new node attaches to an existing
node i with a probability ��ki��1/ki, where ki is the number
of outgoing links at i. The motivation behind this idea is the
following. If the links supply resources to the nodes in the
network, and if the nodes can get the resources only through
other nodes, then a new node will prefer to attach to existing
nodes with fewer outgoing links to minimize its competitors
for resources. We obtained the steady-state outdegree distri-
bution, nk

*, which decays as k�k /��k� for large k, where � is
a constant. In order to further understand the effects of the
low-degree preferential attachment, we also studied an
equivalent growth model with a constant probability of at-
tachment, which yields an exponential outdegree distribu-
tion. We also implemented this mechanism in the cascade
model. The low-degree preferential attachment caused a dif-
ference between in- and outdegree distributions in the modi-
fied cascade model �identical in the original model�, as well
as a significant depression in the tail of the outdegree distri-
bution and a broadening of the tail of the indegree distribu-
tion. These results indicate that the main effect of the low-
degree preferential attachment mechanism is the fast decay
in the tails of the outdegree distributions.

Although we propose this scheme for growing transporta-
tion networks, we do not claim that this is the only factor that
determines the topology of such networks. In fact, we do not
believe that growing transportation networks can be realisti-
cally modeled using a semi-static growth scheme, in which

only the new nodes are allowed to make new connections
while the rest of the network is frozen. Our model also lacks
some essential features such as the conservation of energy or
mass. As a result, the networks can grow indefinitely. Nev-
ertheless, the scheme we propose could be taken as a first
approximation to modeling a growing directed transportation
network, in which the probability of attachment is a decreas-
ing function of the number of outgoing links.
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APPENDIX A: NUMERICAL CALCULATION OF zm
*

We use numerical methods to determine the values of zm
*

for different m. Substituting Eq. �11� into Eq. �9� yields a
self-consistent equation for zm

* ,

zm
* = �

k=0

� �m/zm
* �k��1 + m/zm

* �
��k + 2 + m/zm

* �
, �A1�

which can also be written as

zm
* =

��1,2 + m/zm
* ;m/zm

* �
1 + m/zm

* , �A2�

where ��1,2+m /zm
* ;m /zm

* � is the degenerate hypergeomet-

ric function defined as ��a ,b ;z�=�n=0
�

�a�nzn

�b�nn! , where �a�n

=a�a+1��a+2�¯ �a+n−1�, with �a�0=1 �22�. The right-
hand side of Eq. �A2� is a smooth function of zm

* . We obtain
zm

* by solving Eq. �A2� numerically for m /zm
* �26�. For m

=1, 3, and 5, we obtained zm
* =0.6419, 0.3582, and 0.2467,

respectively, which we used to plot the outdegree distribu-
tion, Eq. �11�, in Fig. 2. The m dependence of zm

* is shown in
Fig. 6. As seen in the figure, zm

* is proportional to m−1 for
large m.

APPENDIX B: THEORETICAL CALCULATION OF THE
SCALING FUNCTION FOR THE GROWTH MODEL

WITH LOW-DEGREE PREFERENTIAL ATTACHMENT

We scale nk
* by substituting u=k /m and p�u 
m�=mnmu in

Eq. �8�:

p�u
m� =
�mu + 1�

zm
* u�m/zm

* + mu + 1�
p�u − m−1
m� . �B1�

By taking the logarithm of both sides, we obtain

ln p�u
m� − ln p�u − m−1
m� = ln
1 + 1/mu

1 + zm
* u + zm

* /m
. �B2�

We convert the left-hand side to a derivative, and expand the
right-hand side into a series assuming that 1 /mu ,zm

* u, and
zm

* /m→0 as m→�:

FIG. 5. �Color online� Scaled in- and outdegree distributions for
the cascade model with �the symbols, � and �� and without �solid
circles� low-degree preferential attachment. In the axis titles, n�

represents the degree distributions, nk
*, nk�

* , and p�in=out��k�, and ���
represents their respective mean values, which are 5 for the original
cascade model, and 2.36 for the modified model. Each distribution
is scaled using its respective ���. The in- and outdegree distribu-
tions have the same mean for each case. Inset: The same distribu-
tions shown on a log-linear scale for comparison.
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1

m

�

�u
ln p�u
m� =

1

mu
−

zm
*

m
− zm

* u . �B3�

This equation has a solution of the form

p�u
m� = Cu exp�− zm
* �u + mu2/2�� . �B4�

We require that p�u 
m� should be normalizable with �u�=1
�recall that �k�=m�. In the limit m→�, this requires that
zm

* =a /m, where a is a constant. Using these conditions, we
normalize p�u 
�� p�u�=Cu exp�−au2 /2�, obtaining C
=
 /2 and zm

* =
 /2m. The asymptotic function, p�u�, is given
in Eq. �12� and shown in Fig. 7. The excellent agreement
with mnk

* vs k /m confirms our results.
This result also implies that the ratio of the standard de-

viation of nk
* to its mean, � / �k�, converges to a constant as m

increases. Therefore, � becomes proportional to m, since �k�
is just m �27�. Figure 6 shows that � / �k�=�+O�1/m� for
large m. We obtain �=limm→�� / �k� using p�u�:

� =
��u2� − �u�2

�u�
= �4/
 − 1�1/2 � 0.522. �B5�

APPENDIX C: THEORETICAL CALCULATION OF
OUTDEGREE DISTRIBUTION FOR THE GROWTH

MODEL WITH DEGREE-INDEPENDENT PROBABILITY
OF ATTACHMENT

We follow the same method we used to derive Eq. �11�.
Taking the probability of attachment independent of in- and
outdegree, and also identical for all nodes, �=1/NT, we ob-
tain the rate equations for the outgoing links,

dNk

dt
= m

Nk−1

NT
− m

Nk

NT
for k 	 0. �C1�

Substituting nkNT for Nk, and using dNT/dt=1, yields equa-
tions for the density of nodes,

NT
dnk

dt
= mnk−1 − �m + 1�nk. �C2�

In the steady state, we have

�m + 1�nk
* = mnk−1

* . �C3�

The solution of this equation yields the steady-state outde-
gree distribution,

nk
* = n0

*ck, �C4�

where c=m / �1+m�. Imposing the normalization condition,
�k

�nk
*=1, we find, n0

*=1−c=1/ �1+m�.
We can also derive the scaling form of this distribution for

comparison with the scaling form of Eq. �11� in Appendix B.
Multiplying both sides of Eq. �C4� by m, we get

mnk
* = � m

1 + m
	k+1

= ��1 + 1/m�m�−�k+1�/m. �C5�

In the limit m→�, this equation yields the scaling function

q�u� = mnk
* = exp�− u� , �C6�

with u=k /m. q�u� is shown in Fig. 7.
As a result, the asymptotic ratio � / �k� for the outdegree

distribution is equal to unity, a characteristic of the exponen-
tial distribution, compared to ��0.522 in degree-dependent
case.

FIG. 6. �Color online� The m dependence of zm
* and the conver-

gence of the ratio of the standard deviation of nk
* to its mean, � / �k�,

vs m. The graph shows that the standard deviation is proportional to
the mean for large m. The ratio � / �k� converges to ��0.522 like
1/m. The zm

* vs m plot confirms that zm
* �1/m for large m.

FIG. 7. �Color online� Scaled degree distributions �thin curves�,
mnk

* vs k /m, for the degree-dependent and degree-independent
models �each for m=10 and 100�, shown along with the asymptotic
scaling functions �heavy curves�, p�u�= 
u

2 exp�−
u2 /4� and q�u�
=exp�−u� with u=k /m. For large values of m, the scaled distribu-
tions collapse onto their respective asymptotic scaling functions.
Scaled distributions are obtained using the analytical forms, Eqs.
�11� and �C4�.
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